THE MINES MAGAZINE
AROUND THE WORLD WITH THE MINERAL INDUSTRIES

CELEBRATING COMMENCEMENT 1950

ROLL CALL
76th Anniversary

Featuring—
76th ANNUAL COMMENCEMENT
MID-CENTURY SURVEY
ALUMNI BANQUET
EDUCATIONAL PROGRAM IN THE MINERAL INDUSTRY
A.A.P.G. CHICAGO CONVENTION
NEWS ATOMIC ENERGY COMMISSION

JUNE 1950

PRICE $1.00
Specify DFC Electric Assay Furnaces for accurate, uniform assays and for the greatest return on your money.

Rugged open hearth type furnace. Fast heating, nickel-chrome "U" shaped heating elements are supported in specially designed refractory blocks . . . insure maximum heat reflection. Furnace lining is backed with high and low temperature insulating brick. Entire unit is encased in welded steel jacket.

DFC Electric Assay Furnaces are economical to operate and comfortable to work around. Wide doors provide easy access to crucibles. Reliable controls insure absolute and constant control of temperatures and control of atmospheric conditions for cupeling.

Available in 4 models which offer wide choice of automatic or manual controls. Capacity: thirty-five 20-gram or twenty-four 30-gram crucibles.

Also gas and oil fired assay furnaces. Write for information.

Throughout the mining areas of the world, Dorr equipment and engineering are available through Associated Companies and Representatives, with facilities for local manufacture.

IN EUROPE: Dorr-Oliver Companies in England, Belgium, Netherlands, France, Germany and Italy.

IN SOUTH AMERICA: J. S. C. Laboratories, Ltd., Buenos Aires; Serva Ferro in Rio de Janeiro; and conveniently located Dorr Resident Engineers.

IN SOUTH AMERICA: J. S. C. Laboratories, Ltd., Buenos Aires; Serva Ferro in Rio de Janeiro; and conveniently located Dorr Resident Engineers.

IN AUSTRALIA: Hubert Duff Pty. Ltd., Melbourne.

IN THE PHILIPPINES: C. W. Burgess, Engineering Representatives, Baguio.

IN JAPAN: Sané Engineering Co., Ltd., Tokyo.

IN SOUTH AMERICA: J. S. C. Laboratories, Ltd., Buenos Aires; Serva Ferro in Rio de Janeiro; and conveniently located Dorr Resident Engineers.
PERSONAL NOTES

Charles F. Allen, '44, has returned to the States from Johannesburg, South Africa, where he was serving as Technical Representative for the South African Cyanamid Company and, at present, is being assigned to 318 West Broad Street, Stamford, Conn.

A. H. Applewhite, '27, Sales Engineer, Goodyear Manufacturing Company, has been transferred to the main office of the company, 4310 South Federal Street, Chicago 9, Ill., where he enters mail.

Gregg, O. Young, Jr., '35, newly appointed Editor of Mining World and World Mining, 121 Second Street, San Francisco, California, was a Denver visitor the middle of last month.

Fred P. Richardt, '20, who is retired and is residing in a few miles out of Denver, is addressed Route 2, Box 124, Arvada, Colorado.

Robert E. Black, '49, Graduate Student at George Washington University, has a change of address to 3173 Massachusetts Ave., N. W., Washington 6, D. C.

Donald H. Blair, '29-30, is receiving mail at 150 Fairview Road, Apt. B-3, Lebanon, N. J.

C. A. Maurer, '26, Manufacturer of Dental Goods, has moved his offices from the Mark Building to 722 Exchange Building, Denver, Colorado.

A. P. Boyd, '26, of Bishop, California, was visiting in Boulder, Colorado, and Denver the latter part of April.

John A. Brandon, '30, Metallurgist for American Smelting & Refining Company, has been transferred from Magdalena to Deming, New Mexico, with street address 102 So. Silver.

L. C. F. Brink Brine, '22, since his arrival in California from Fort Monroe, Virginia, has obtained an apartment where he is now at home, 156 School Street, Apt. D, Daly City, Calif.

D. L. Corder, '46, has been promoted to the position of Field Engineer by Gulf Oil Corporation and transferred from Dallas to their Houston office. His new address is in care of the company, Box 2146, Houston, Texas.

Evelyn Creek, '53, Field Engineer for Standard Oil & Gas Company, is addressed Box 146, Ulysses, Kansas.

John P. Cooper, '49, has completed his work for his Master's degree and has accepted a position with Shell Oil Company. For the present, mail is being addressed at his home, in Anna, Illinois.

C. L. Cowan, '07, Consulting Engineer and Roebling Representative, has been transferred from Mt. Morris, Michigan, to Denver, Colorado.

H. C. Cram, '41, Field Consultant for Standard Oil & Co., is addressed Box 162, Ulysses, Kansas.

E. C. Johnson, '43, Consulting Engineer with office 477 Cooley Building, Denver, has moved his residence to 1444 Ballester Street, Denver 7.

C. O. Clark, '40, who is associated with International Consultants, Inc., is addressed 226, Box 243, Cody, Wyoming, called at the Alumni office recently when in Denver.

B. C. Custer, '43, upon completing work on his Master's degree, accepted a position with the Atomic Energy Commission. His present address is Box 270, Grand Junction, Colorado.

John G. Collins, '40, Resident Engineer for Trigard Oil Company, Box 165, Topeka, Kansas, reopened.

(Continued on page 14)

Biggest Wire Rope NEWS in Years!

2 New Wire Ropes

Prove Completely Superior and Long-Lived on Excavating Machines

AFTER THE TOUGHEST TESTS in actual service, the new Roebling 6 x 43 and 6 x 49 Wire Ropes are ready to help you get things done with remarkable savings of wire rope dollars. These two new ropes are exclusive developments and made only by Roebling. At hoist ropes on shovels and draglines and as thrust and counterweight ropes on shovels they have proved in a class by themselves.

The new 6 x 43 and 6 x 49 are Blue Center Steel Lay Long Lay, with Independent Wire Rope Core and Roebling Preforimng. Outside wires are large, for greatest resistance to wear and tear and abrasion...inside wires are small, for maximum flexibility, handling ease and operating efficiency. This type of construction spells extraordinary efficiency and completely new measures of economy for users of medium and large size shovels, draglines, and dredges.

Have your Roebling Field Man help choose the right rope for your machines. He is in close contact with Roebling Engineers...and this team is constantly solving every type of wire rope problem. That's why...

Today it's Roebling!

Distributed by:

HENDRIE & BOLTHOFF CO.

1435 17th Street, Denver, Colorado
Today’s biggest news in deep hole drilling

Gardner-Denver deep hole drilling equipment with “Ring Seal Shank”

Here’s a new set of field-proven drilling equipment that will revolutionize your deep hole drilling. Now, for the first time, you can take full advantage of tungsten carbide insert bits and modern rock drill power for faster, lower cost deep hole drilling.

No more water swivel troubles

The new Gardner-Denver “Ring Seal Shank” replaces the old type water swivel at a fraction of the cost—eliminates water swivel troubles.

Higher blowing pressures

“Ring Seal Shank” delivers water or air at any pressure that can be used on deep hole drilling—assures positive hole cleaning.

Longer rod and coupling life

Gardner-Denver sectional rods and couplings withstand the shock and grind of deep hole drilling—last much longer than conventional equipment—because they’re manufactured with the same skill and precision as rock drill parts. Red design has been carefully engineered to minimize stress concentrations and to form a tight union between all parts.

Tested and proved in the field

Gardner-Denver deep hole drilling equipment has been widely field tested—now in use in many United States and Canadian mines—drills prospect holes at a fraction of the cost of diamond drilling.

Write today for complete information.

Gardner-Denver

Since 1859

Gardner-Denver Company

Denver, Colorado and Quincy, Illinois

In Canada:

Gardner-Denver Company (Canada) Ltd., Toronto, Ontario.
You see more and more mine operators turning to Du Pont 'MS' (Millisecond) Delay Electric Blasting Caps. The way they look at it... these caps lower the cost of explosives per ton of ore mined... in both outside and underground work.

"And when you do the blasting yourself, you appreciate working with 'MS' Caps. For one thing, you feel safer. These caps pull the rounds clean... leave no dynamite in the muck, and the chances are that you can reduce your explosive load appreciably. What's more, blasting with 'MS' Delays greatly cuts down concussion and vibration. They are easier to work with, too. Priming is simplified because 'MS' Caps are all the same length, and there's no mistaking the clearly marked delay periods on each cap... even if there is poor light at the working face.

"One thing more, When you're using Du Pont 'MS' Delay Electric Blasting Caps, you know there's going to be a lot less secondary blasting. We've seen these caps give well-broken ore time after time... even from badly fractured veins.

"We work with them... we know."

Ask any Du Pont Explosives representative for complete information about "MS" (Millisecond) Delay Electric Blasting Caps, you'll be glad to help you. E. I. du Pont de Nemours & Co. (Inc.), Explosives Dept., 444 17th Street, Denver, Colorado.

New Edition Blasters' Handbook

470 pages of up-to-the-minute information every blaster can use. Outlines accepted methods, contains new charts... new tables... and an officially approved check list of safety measures. Shows best way of preparing, priming, loading and blasting charges in all kinds of work. Send for your copy now...$1.50 postpaid.

"When YOU do the blasting—you appreciate Du Pont 'MS' Caps"
CONTRIBUTORS TO PLACEMENT FUND FOR 1950

These three contributors to Mines Placement Service are among the most active and consistent. Their contributions may be helpful to others by demonstrating the value of the service. These are the three men who have consistently contributed their time and energy to the placement service. Their contributions are appreciated and encouraged.

1. E. F. Pearson, Jr., '79
2. W. F. Stanford, '80
3. R. R. Allen, '60

These contributors are from the following states:

1. California
2. Colorado
3. Texas

These contributors have shown a real interest in Mines Placement Service and have contributed to its success. Their contributions are a reflection of their belief in the value of a proper placement service. Their contributions are appreciated and encouraged.

1. D. F. Lewis, '21
2. M. M. Aycardo, Jr., '41
3. E. N. Norman, '49

These contributors have consistently contributed to Mines Placement Service and have shown a real interest in its success. Their contributions are appreciated and encouraged.

1. H. D. Graham, '48
2. M. John Bernstein, '47
3. Wilfred Fullerton, '12

These contributors have shown a real interest in Mines Placement Service and have contributed to its success. Their contributions are appreciated and encouraged.

1. N. J. Christie, '31
2. A. H. Logan, '78
3. P. M. Hambly, '78

These contributors have consistently contributed to Mines Placement Service and have shown a real interest in its success. Their contributions are appreciated and encouraged.

1. C. D. Reese, '43
2. Victor Bychok, '42
3. F. J. Weishaupl, '49

These contributors have shown a real interest in Mines Placement Service and have contributed to its success. Their contributions are appreciated and encouraged.

1. C. V. Woodard, '44
2. J. W. R. Crawford, III, '45
3. W. C. Kendall, '47

These contributors have consistently contributed to Mines Placement Service and have shown a real interest in its success. Their contributions are appreciated and encouraged.

1. J. L. Bruce, '01
2. W. H. Nikola, '41
3. W. J. McQuinn, '46

These contributors have shown a real interest in Mines Placement Service and have contributed to its success. Their contributions are appreciated and encouraged.

1. E. G. Snedaker, '14
2. R. W. Evans, '36
3. R. D. Eakin, '48

These contributors have consistently contributed to Mines Placement Service and have shown a real interest in its success. Their contributions are appreciated and encouraged.

1. E. L. Durbin, '36
2. G. W. Mitchell, '23
3. J. D. Moody, '42

These contributors have shown a real interest in Mines Placement Service and have contributed to its success. Their contributions are appreciated and encouraged.

1. L. P. Corbin, Jr., '40
2. L. E. Wilson, '27
3. R. G. Hill, '39

These contributors have consistently contributed to Mines Placement Service and have shown a real interest in its success. Their contributions are appreciated and encouraged.

1. T. H. Allan, '18
2. F. E. Woodard, '42
3. A. G. Hoel, Jr., '40

These contributors have shown a real interest in Mines Placement Service and have contributed to its success. Their contributions are appreciated and encouraged.

1. E. J. Brook, '23
2. R. L. Scott, '42
3. C. A. Weintz, '27

These contributors have consistently contributed to Mines Placement Service and have shown a real interest in its success. Their contributions are appreciated and encouraged.

1. J. W. Gabelman, '43
2. E. J. Brook, '23
3. C. V. Woodard, '44
those interested in any of the positions listed may make application through "Mines" Capability Exchange, 734 Cooper Building, Denver 2, Colorado.

A South American mining company has a position open for an engineer who has ore-buying experience and a good knowledge of mining practice, and is familiar with mining operations. Salary open.

A known mining company operating in Central America has a position open for a Junior Mining Engineer. Salary $4000 to $5000 per year.

A mining company in South America has a position open for an Engineer and Physicist. Salary $6000 to $7000 per year.

An engineering company has a position open for a Research Engineer. Probable salary, $8000 per month plus travel and living expenses.

A known research organization is setting up a new section in the field of pyrometallurgy. Applicants should have Master's or Doctor's degrees.

A company operating non-metallic mines has a position open for Mining Engineer under 30 years of age. Must be familiar with mining engineering and able to coordinate research, development, and practice in the mining operation. Probable salary $7600 per month plus travel and living expenses.

Those interested in any of the positions listed may make application through "Mines" Capability Exchange, 734 Cooper Building, Denver 2, Colorado.
We are now testing the world's first concentrator. This is الحال on the greatest concentrator in the world. The efficiency and simplicity of the operation is such that it can separate pyrite from copper concentrates, silver, gold, and even uranium with ease. As the test results show, the new concentrator can process 1,000 tons per day at a cost of only $2 per ton. The cost for the concentrator is $25 per ton.

We congratulate... 1950 Graduates

The Stephan Corp.

Rt. 6, Box 1782, Fremont Blvd.

SACRAMENTO, CALIFORNIA

Telephone: PH 7-5324

119x37 with mining work. Must be position open for a young geophysical engineer with seismic experience in connection with ore deposits and be plant in connection with copper smelting plant. Expenses paid. Must be in good physical condition.

TECHNICIANS

Three year contract with liberal salary. Housing and utilities furnished.

NATURAL APATITE

Natural aptitude for research important. Salary some actual experience in ore beneficiaton.

VALENTINE ENGINER.

for a Superintendent of sulphuric acid plant. Physicist with experience in the control of actual operation, who is capable of developing new techniques for reducing and controlling dust, especially designed to increase operating efficiency.

JUNE, 1950

Rand's famous DA-35 Drifter. A highly significant breakthrough, this new tool allows for a much more efficient and easier way of drilling. Its light weight all-aluminum construction cuts shell weight and allows for the use of longer drill steels: with 33% fewer connections. The greater length of this new shell permits the use of longer drill steels. Its light weight and improved feeding qualities result in better hole cleaning, reduced air consumption, and lower operating costs. The patented double-kicker port valve, which is standard on this new tool, results in stronger rotation, and better hole cleaning. The new design has been especially designed for increased operating economy. Tests show that this new drill actually requires 25% less air at foot of hole. What's more, the new design has resulted in a longer lasting, better hole cleaning ability and improved feeding qualities. These combined features give you a rugged, heavy-duty drifter that will out-perform the record-breaking performance of Rand's famous 7-in. DB-35 Drifter.

The greater length of this new shell permits the use of longer drill steels. With 33% fewer connections, it gains the weight advantage and improved feeding qualities. Often drilling speed can be increased by 50% or more, tonnage can be boosted 10% or better and dynaloy requirements for a given footage. Its lightweight all-aluminum construction reduces weight almost to half. In fact, it is even lighter than the old-style 30-inch shell and has equal or better life. This lightweight is particularly important when drilling from a column or bar.

This DB-35 Drifter and 48" Aluminum Shell Saves Three Ways!

Ingersoll-Rand's new DB-35 Drifter, with the potential double-bore pilot hole, has been especially designed to increase operating economy. Tests show that this new drill actually requires 25% less air at foot of hole. What's more, the new design has resulted in a longer lasting, better hole cleaning ability and improved feeding qualities. These combined features give you a rugged, heavy-duty drifter that will out-perform the record-breaking performance of Ingersoll-Rand's famous 7-in. DB-35 Drifter.

33% Fewer Steel Changes with the NEW Lightweight 48-inch Aluminum Shell

The greater length of this new shell permits the use of longer drill steels— with 33% fewer connections, it gains the weight advantage and improved feeding qualities. Often drilling speed can be increased by 50% or more, tonnage can be boosted 10% or better and dynamic requirements for a given footage. Its lightweight all-aluminum construction reduces weight almost to half. In fact, it is even lighter than the old-style 30-inch shell and has equal or better life. This lightweight is particularly important when drilling from a column or bar.

This combination is ideal for you with the famous 7-in. DB-35 Drifter Mounting. For complete information check with your nearest Ingersoll-Rand office today.
Wherever iron or steel meets abrasive minerals, how to specify the best wear-resisting materials?

Textbook information is scanty, and large-scale wear tests are tedious, expensive and too often inconclusive.

Reprints of an informative and authoritative paper (published by the American Institute of Mining and Metallurgical Engineers), giving the statistical results of extensive wear tests on a wide range of grinding ball materials, are now available.

Copies of this paper are available to interested engineers and metallurgists. Although the data apply specifically to wear tests on grinding balls, there is a wealth of comparative information listed in the form of "abrasion factors" for forged and cast steels, chill cast irons, white irons, etc, which can be applied to many other abrasive conditions encountered in the mineral industry.

Send now for reprint on "Wear Tests"

Climax Molybdenum Company
500 Fifth Avenue • New York City

Table 4 - Relative Rates of Wear of 10 Lb. Diameter Grinding Balls in 2 X 6-J. Mill at Climax, Colo. (May 1947)

<table>
<thead>
<tr>
<th>Material</th>
<th>Cvd. 2.5 M.</th>
<th>Cvd. 1 M.</th>
<th>Cvd. 1/2 M.</th>
<th>Cvd. 1/4 M.</th>
<th>Cvd. 1/8 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cr</td>
<td>Mo</td>
<td>Fe</td>
<td>Ni</td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.10</td>
<td>5.10</td>
<td>0.20</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.20</td>
<td>10.20</td>
<td>0.40</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.30</td>
<td>15.30</td>
<td>0.60</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>0.40</td>
<td>20.40</td>
<td>0.80</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td>25.50</td>
<td>1.00</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Footnote: *a 0.1 mm worn abrasive mineral ball is used, the abrasion factor is a little high.

Phree and FREE the
32 pp. reprint on "Wear Tests"

Name: __________________________
Company: ________________________
Address: ________________________

Send now for reprint on "Wear Tests"

Climax Molybdenum Company
500 Fifth Avenue • New York City
Calwico-Wissco wire cloth is available in sizes from fine filter cloth to 5-inch space cloth... made in bright or galvanized steel, brass, copper, bronze, nickel, aluminum, stainless steel, and other metals... for use on filters and vibrating, revolving, and stationary screens.

Thus, you can get the best wire cloth for each particular application in your milling operation... the wire cloth which will help you cut your milling costs.

CF&I FORGED STEEL GRINDING BALLS are hot-forged of tough, abrasion-resisting steel and carefully heat treated for uniform wearing qualities. There are no soft spots; thus they stay round, providing maximum grinding efficiency through their long life... and cut your grinding costs.

CF&I FORGED STEEL GRINDING BALLS are hot-forged of tough, abrasion-resisting steel and carefully heat treated for uniform wearing qualities. There are no soft spots; thus they stay round, providing maximum grinding efficiency through their long life... and cut your grinding costs.

OTHER CF&I PRODUCTS FOR THE MINING INDUSTRY: Wickwire Rope, Grinding Rods, Realock Fence, Clinton Welded Wire Fabric, Grader Blades and other Cutting Edges, Mine Rails and Accessories.

The Mines Magazine
VOLUME XL
JUNE, 1950

Contents

COLORADO SCHOOL OF MINES HOLDS ITS 76TH ANNUAL COMMENCEMENT

A MID-CENTURY SURVEY FOR THE ENGINEER

"MINES" ALUMNI BANQUET

PROGRAM OF EDUCATION IN THE MINERAL INDUSTRY

"MINES" MEN WELL REPRESENTED AT THE CONVENTION OF AAGP — SEPM AND SEG

PROGRESS NEWS, U. S. ATOMIC ENERGY

Departments

PERSONAL NOTES

LETTERS

CONTRIBUTORS TO PLACEMENT FUND FOR 1950

TECHNICAL MEN WANTED

WITH THE MANUFACTURERS

PLANT NEWS

CATALOGS AND TRADE PUBLICATIONS

ALUMNI BUSINESS

FROM THE LOCAL SECTIONS

WEDDINGS

MINES TODAY

SPORTS MARCH

BOOK REVIEWS

BIRTHS

Front Cover

Roll Out — 76th Anniversary.

FOR ADVERTISERS LISTINGS, SEE PAGE 62

FOR ADVERTISERS LISTINGS, SEE PAGE 62
The Steinhauer Fieldhouse provided an excellent auditorium for the graduation ceremonies. The degrees were awarded by President John W. Vanderwilt and Professor Clark B. Carpenter, Chairman of the Graduate Division.

In presenting commissions to Corps of Engineers, U. S. Army, to graduates of the Reserve Officers’ Training Corps, President Vanderwilt called attention to the fact that the university has 9.7% of all Engineering degrees awarded in the country. This represents thirty-nine states and ten foreign countries; two hundred thirty-six of these are World War Veterans, a large portion of which are married and have families totaling one hundred and eight children.

The Degrees were awarded by President John W. Vanderwilt and Professor Clark B. Carpenter, Chairman of the Graduate Division.

In presenting commissions to Corps of Engineers, U. S. Army, to graduates of the Reserve Officers’ Training Corps, President Vanderwilt made the following remarks:

"The Colorado School of Mines, in the period between 1919 and 1941 furnished 9.7% of all Engineering Officers. At the present, the R.O.T.C. Unit at 'Mines' is the largest single Engineering R.O.T.C. Unit in the United States. This Unit will send more Cadets to the 1950 summer camp than any other Unit at 'Mines'."

(Continued on page 20)
of the answers could be found in a rough measurement of the accomplishments, the forces, and the rate of change of the first 50 years of the Industrial Revolution. These forces and movements were contained within a continent while a period of a half century. I have considered two broad fields—one, the great movement toward sweeping changes on the social and political scene; the other, the tremendous pace of material growth is an augury of the future. It was the greatest stimulus to concentration, centralization, and specialization.

In the first year of 1900, 4000 electric cars were produced; today we produce that many in one afternoon and day.

In 1900 there was electric generating capacity for 2,000 kw; in 1949 it was 30,000 times as great.

Today we have 35 million telephones, 14 million radios, 10 million automobiles, 6 million electric refrigerators, washing machines, radios, and innumerable other devices known at the turn of the century.

It seems impossible to believe that the review of just the last 50 years gives us any clue as to what might happen in the years to come, for these changes occurred in the same number of years that you should be privileged to live and died for no small achievement for yourselves.

This tremendous pace of material development is a measure of the force and movement of our times.

New Discoveries

New Opportunities

Every new discovery has brought about new war. In spite of all the disadvantages and evils that flow from war, it is so necessary to concentrate and hasten developments on the materials and power used in war, all men are brought together in a common cause through the common danger of being confronted, killed, or overwhelmed by the enemy.

War creates vast and novel problems in new hatred and in the fact that there is to take most of the young, vigorous man for the armed services. And while it reduces the average working hours of the average man, it makes enormous demands on the economy and on the resources of nations, and on the industries of war superior to the enemy.

Some ordinary peace time supplies are shut off. Orders become drastically short. Demand becomes astronomical and, at that time, the government must be perfected, substitutes developed, production increased.

For the purpose of this aviation industry growing from a few thousand and private planes to a million and more thousand of production and sales per year, the automobile production has increased from twenty million to production of war manufactured as well. This is a measure of the stimulus of war.

Research and Development Makes Rapid Strides

To meet these quotas and solve the problems that are broken, all barriers are down.

Scribner's is brought together and assigned given roles. The first company was The Office of Scientific Research and Development, headed by that able man, Vannevar Bush, gathering together 30,000 scientists and engineers for the development of new weapons and equipment, it was the increasing reliance upon the trained engineers in a society that will dominate the future industrial and complex.

What does all this scientific and material development mean? And what is it that we would like to see in your own estimates of how you see it? What is your life of the future?

Great Sweeping Social Changes

The result of all of this is that we have the present industry as it exists throughout the United States.

Great industrial development and two world wars have worked sadly to destroy our industries, our agricultural economy. There was a centralization of knowledge and methods into a peace movement.

Great sweeping changes on the social and political scene have been as radical and sweeping as the technical developments in new fields. He before us that has been the true strength of our industries.

The result of all of this is that we have the present industry as it exists throughout the United States. In the field of raw materials, our ability not only to support the needs of war but to expand our economies has increased 2% a year and is now increasing at more than this rate. This investment and improved technologies provide that impetus and removes the emergencies in unexpected field after field.

My experience in the West demonstrates that the source of great power of the century was not, of course, in foreign unrelate...
work an average of 58 hours a week. We have seen the inevitable growth of big corporations to provide our needs through mass production. We need a program of nationalization of property rights by diminishing the incentive to take normal investment and compensation for accident and death. There has been a major revolution in the improvement of working conditions, in the development of safety devices, in the reduction of occupational hazard, in health and well being of the worker.

On the other hand, we have developed mass production and offer the incentive to be re-examine whether these interpretations and adjustments are in accord with that will and that wish. We have seen the seeable growth of big corporations to provide our needs through mass production. The Constitution has assumed some of the taxing power of the state. We have seen our Constitution interpreted anew. The Constitution must be flexible and must reflect the will of the people. We must always be alert to re-examine whether these interpretations and adjustments are in accord with that will and that wish. We have seen the inevitable growth of big corporations to provide our needs through mass production. The Constitution has assumed some of the taxing power of the state. We have seen our Constitution interpreted anew. The Constitution must be flexible and must reflect the will of the people. We must always be alert to re-examine whether these interpretations and adjustments are in accord with that will and that wish.

In the early thirties we had a depression that caused misery and unemployment. It occurred when you were very young, but I am sure your parents will never forget it. It raised the question of whether any credit system can survive which does not permit a man to work who wants to work. We found the depression. In our dilemma we resorted to plowing under of crops, to slaughtering livestock, to burning fuel, to cutting the income of the workers. We need a program of nationalization of property rights by diminishing the incentive to take normal investment and compensation for accident and death. There has been a major revolution in the improvement of working conditions, in the development of safety devices, in the reduction of occupational hazard, in health and well being of the worker.

It took more than a snowstorm in May to cool the enthusiasm of a group of "Mines" who had planned for months on the big "put-togethers" at their Annual Alumni Banquet. Despite the fact that the Speaker of the Meeting, Mr. G. T. Harley, General Manager of the International Minerals and Chemical Corporation, Caribou, New Mexico, was a "grounded" at Pueblo, on account of the storm, the banquet was held on schedule at six o'clock, May 25, in the Daniels and Fisher Dining Rooms, Denver.

The large group of "Mines" and their friends soon filled the "Men's Club Room" beyond key capacity. The group represented classes from 1898 to 1950 inclusive. It was the first year of graduation that many of those present had the opportunity of meeting with such a representative group of "Mines." The gaudy "Mines Spirit" ran high and Joe Ruth was kept mighty busy passing out refreshments. The time was all too short to allow for the relating of the many fortunes made and lost since leaving "Mines."

It was a jubilant crowd that sat down to a fine roast-beef dinner in the main dining room, Alumni Association president, James Colasanti, introduced Miss Donna Morrison, Acc. Bursar and Vocelik, who led the "Mines" in singing of the National Anthem, and later entertained those at individual tables with their favorite songs and music. While waiting for the speeches, many of the group were singing the "Mining Engineer," the song first composed and sung by "Mines" men in the '70s. When all were finished with the sumptuous dinner, Dorm Jan 44, welcomed members of the Class of 1950 and congratulated them for having such a fine representation at this gathering.

He said, "Past records show that 'Mines' men who have gone out and assumed responsibility have reached a point where they can look back upon their "Mines" days with pride."

Walter S. Fuchs, Class President, remarked, saying that "there are two hundred sixty-eight of the finest in the Class of 1950 and that all of these people this evening have gained a great present."

President Colasanti next congratulated the Silver Anniversary Class of
All eyes on Donna Morrison and Oscar Johnson.

1925, pointing out that of the seventy-eight graduated, seventy-six are still among the living. Those who have passed on are Charles D. Bennett, Alfred T. Ehrlck, Homer L. Johnson, Franklin O. Kingsley, Emel J. Nyland, Frederick L. Teale and Henry W. Waterfield.

As spokesman of the Class, Professor Clark P. Barh read letters and telegrams from members who could not be present. He said that contributions for the Silver Offering had come from the Philippines, China, Newfoundland and other foreign countries as well as from many states in this country. He concluded by presenting to Company President Dr. Colasanti, Treasurer, the Silver Offering of $78.00 for the C. S. M. Foundation.

Following Steinhaus's speech accepting the gift, President Colasanti introduced Russell H. Volk, Toastmaster for the evening. After telling one of the "wild and wooly" stories from his inexhaustible supply, he introduced Dean Merton I. Signer, President of the Board of Trustees, who introduced Dean Merton I. Signer, President of the Board of Trustees.

When called upon by the Toastmaster, President Signer introduced古语 and Steele brought out Steele and Ball.

When introducing George A. Parks, '96, former Governor of Alaska, Toastmaster Volk asked for a few remarks. Mr. Parks said there had been many changes since he graduated from "Mines," one of which was in travel time. He could now leave Alaska at 12:30 noon one day and be in Denver at 2:30 P.M. the next day, where he used to take weeks.

He said he recalled a piece of advice given to him when he went out on his first job, "you do not have to reform the whole world, all you have to do is your own little job," and that still holds good.

Dave Johnson, Athletic Business Manager, was introduced and introduced and Fred A. Ahrens, Manager of Athletics. Fred called attention to the Alumni Athletic Association (AAA) which, for an annual subscription of $5.00, furnishes each member with the Ore-Digger for one year, a book of tickets good for attendance at all home games during the school year and a chance to participate in a revolving fund to help purchase text books for needy students. He said that the large part of the improvement in athletics at "Mines" could be credited to the efforts of "Mines" alumni.

A telegram expressing congratulations and good wishes was read from Donald Darmforsbyd by Toastmaster Volk who also stated that Eddie Brook had planned on being present but illness in his family had prevented it.

Frank C. Bowman, who needed no introduction, was called upon for a few remarks. He called attention to the active work of the Alumni Association and especially that of the Placement Service, directed by an eight man committee, which had become well known by many branches of industry throughout the country and also foreign countries. In the past few years it has helped many employers to secure competent technical men and found employment for "Mines" men who needed a job or desired a change of employment. This activity of the Association is continually expanding. For the past two years, much time has been directed to the placement of new graduates.

Toastmaster Volk now announced that the final and great event of the evening was the drawing of the prizes and turned the meeting over to Ed White, Chairman of the Public Relations Committee, who conducted the drawing, assisted by Al. A. Holland.

"Rut" Volk prepares for a "wild one."
V Jack Weyler receives fatherly advice.

Louis R. Ball, the lucky man present from the Class of 1900, was awarded the fine electric clock presented by the Hendrie & Boltzhoft Company, of which Henry T. Waterman is President, and Robert W. Emminger, General Manager. James M. Flood, member of the firm, was present as our guest. Established since 1861, the firm deals in machinery, tools and supplies for mines, mills, contractors and automobile owners.

Clark Barb was the lucky man from the Class of 1925, and received an order from Frank Strauss, Book Store, Golden, for $20 worth of technical books of his own selection, presented by Gardner-Denver Company. This
company is the manufacturer of mining equipment, including compressors, drill, car loaders, hoists, a p u t p, excavators and other equipment, Ben C. Easton, '15, is Vice-President.

Winford N. Clark, '30, the oldest graduate present, was the winner of a combination thermometer and barmometer presented by the Denver Fire Clay Company, who are one of the oldest manufacturers of fire clay goods and manufacturers of and dealers in assaying and laboratory supplies and equipment. Chute E. Evans is President. This firm is the oldest advertiser in Mines Magazine and "Mines" publications since 1892.

All good things must end and "Mines" Alumni Banquet is the exception. Many thanks for a grand and glorious time to the Entertainment Committee and J. S. Lopyant, Manager of Daniels and Fisher dining room.

These attending the banquet were the following:

Daniel Pray; Frank J. Fries, '30; N. N. Hendry, '41; A. F. Corletta, '48; Fred Watson, Graduate Student; Robert S. Pitzer; Oscar Reynolds, '41; Ed Oyler, '41; N. M. McAuley, '18; Tyler Peinbold, '28; Dennis R. Grogan, '32; Harry Mathews, '39; A. H. Magro, '39; Don Drinkwater, '28; John V. Fleming, '42; Allen E. Craig, '31; Gen. Andrew; Gustave German; Arthur W. Laurenza, '32; Glenn Gunns, '31; H. L. Maxem, '39; R. H. Muench, '16; W. S. Brink, '28; R. E. Powers; Guest; V. L. Mathews, '20; C. D. Warren, '22; Harry L. Nell; Mallory E. Collier, '22; Hugh R. Wallace, '22; William H. Johns, '23; Charles H. Jenkins, '29; Dave C. Johnson, '32; Earl W. Judson, '29; W. J. Lin, '22; R. R. Heiser, '36; M. G. Zimf, '28; Richard H. Profit, '25; Stewart Collins, '40; Frank J. Murphy, '38; Donald F. Welsh, '21; James M. White, '30; Alan L. Skidmore, '31; Carl L. Duro, '22; W. F. Muser, '38; F. A. Brighter; Guest; Lundy Barker, '31; Karl E. Larsson, '21; Ivan J. Vaughan, '28; R. Carrier, '21; M. L. Sager, Fac.; Ted P. Stockman, '33; Gene A. Parks, '29; L. T. Thomas, '22; Ben H. Parker, '24;...
that the four-year degree awarded by the technical school should be the Bachelor of Science Degree with proper designation.

Bachelors of Science in Mining Engineering

Bachelors of Science in Geology and Physical Geography (Eng.

or Eng. Geology).

As to the content of these courses they should necessarily be balanced, providing a broad and in-depth background in all the major science subjects including mathematics, physics, chemistry, geology, metallurgy, and applied psychology. Advanced work in geology, metallurgy, mineralogy, mining, design, and civil and mechanical engineering should be included where applicable.

During these years of experience the schools can be helpful to the young man by providing him with lists of significant books and periodicals and describing the new developments in the industry, new discoveries in the art, and other pertinent material. Such helpful lists and books help the young man to develop his interest in the subject.

It is ten years now since I have had any relations with our mining schools, but I have observed many interesting things in the industry and have been interested in watching their progress and their problems, perplexities and inadequacies.

Conclusions

My conclusions are based on these observations:

1. Our engineering courses should be broadened to include the study of physical, chemical, and biological sciences, the social sciences and the humanities.

2. We need to include sound cooperative relations, as well as the practical aspects of electrical engineering in the curriculum to provide the young man with a broad background.

3. The professional engineering degree should be a four-year course for top specialization in any one field of engineering.

4. We need to include sound cooperative relations, as well as the practical aspects of electrical engineering in the curriculum to provide the young man with a broad background.

5. There will be no place in such a well-rounded four-year course for too great specialization in any one field of engineering. The young man must acquire a broad background in the sciences and humanities, in order to have a general understanding of the problems of human and industrial relations in the industry.

6. There will be no place in such a well-rounded four-year course for too great specialization in any one field of engineering. The young man must acquire a broad background in the sciences and humanities, in order to have a general understanding of the problems of human and industrial relations in the industry.

7. We do not advocate the return of a young engineer who has had several years of experience to industry as a student engineer to get his professional degree, which requires a full year of residence. Rather we believe that the professional degree should be given to the young man who does not go to college a general picture of our national economy as: the young man by providing him with lists of significant books and periodicals and describing the new developments in the industry, new discoveries in the art, and other pertinent material. Such helpful lists and books help the young man to develop his interest in the subject.

8. A thesis which shows adequate knowledge of a special branch of the industry may be required for a Masters Degree. The Professional Degree should be based on a thesis which shows the candidate's ability to do adequate work in the industry. A thesis should necessarily be based on original research, and be expected to be the result of the candidate's work in the industry. A thesis should necessarily be based on original research, and be expected to be the result of the candidate's work in the industry.

9. Our schools can cooperate and encourage the young man to get his professional degree more wholeheartedly and intelligently than they have in the past to the great benefit of the recipient and to the industry for which he is being trained.

10. We do not advocate the return of a young engineer who has had several years of experience to industry as a student engineer to get his professional degree, which requires a full year of residence. Rather we believe that the professional degree should be given to the young man who does not go to college a general picture of our national economy as: the young man by providing him with lists of significant books and periodicals and describing the new developments in the industry, new discoveries in the art, and other pertinent material. Such helpful lists and books help the young man to develop his interest in the subject.

11. The Master's Degree should be conferred upon the candidate by the school of his choice, if he has met the requirements of the degree as described above. The Professional Degree should be awarded to the candidate by the school of his choice, if he has met the requirements of the degree as described above. The Professional Degree should be awarded to the candidate by the school of his choice, if he has met the requirements of the degree as described above.

12. Our schools can cooperate and encourage the young man to get his professional degree more wholeheartedly and intelligently than they have in the past to the great benefit of the recipient and to the industry for which he is being trained.

13. We do not advocate the return of a young engineer who has had several years of experience to industry as a student engineer to get his professional degree, which requires a full year of residence. Rather we believe that the professional degree should be given to the young man who does not go to college a general picture of our national economy as: the young man by providing him with lists of significant books and periodicals and describing the new developments in the industry, new discoveries in the art, and other pertinent material. Such helpful lists and books help the young man to develop his interest in the subject.
The announcement of George E. Wagner, '28, of Shreveport as the newly elected President of the Society of Exploration Geophysicists was made by the Society during the Convention. Wagner assumes the high post for the year 1950-51, succeeding Andrew Gilmour of Tulsa.

Wagner is southern division manager of the Carter Oil Company. He graduated from the Colorado School of Mines in 1928. Wagner served as secretary-treasurer of the International Society of Exploration Geophysicists in 1950-51, and during the past year he was vice-president. The presidency of the Society is one of the highest honors which a geophysicist may attain. Other officers elected were Sigurd Hammer, of Pittsburgh, vice-president and Francis C. Campbell, of Tulsa, secretary-treasurer.

PERSONAL NOTES

(Continued from page 16)

Joe Conroy, '43, resigned his position with Phillips Petroleum Company, to go to Alaska with the Independence Mine at Wasilla.

Harry C. Jaffee, '45, has moved from Binghamton to Murray, Utah, with post office address Box 1 if he is associated with the U. S. Smelting, Refining & Mining Co. in Salt Lake City.

Martin O. Sheppell, '41, who was recently reinstated in Oklahoma City by his producing department, has address in Box 1, Box 75, Fayette, Louisiana.

William H. King, '28, Mining Engineer with U. S. Bureau of Mines, has been transferred from Washington, D. C., to the Denver office. He is receiving mail at his home, 6620 East 17th Avenue, Denver.

Carvel B. Lane, '25, who for the past several years has been Minerals Attaché to the U. S. Embassy in Peru, Chile, Colombia, Bolivia and Venezuela, has returned to his home, 6620 East 17th Avenue, Denver.

(Continued on page 53)
URANIUM EXPLORATION IN THE UNITED STATES

The impact of World War II, and the development of the atomic bomb, created a sudden and immense demand for uranium. In the early days of uranium exploration, the materials program was inefficient; sufficient raw materials could be secured from the mines only by unskilled workers. The use of time and space sophisticated uranium weapon requirements were demanded from the government: the rich raw material source at Grand Banks, Newfoundland, and the uranium sources at the Colorado Plateau in the United States.

In the early part of the program, therefore, our efforts were directed toward obtaining uranium on the same general level from those localities.

In December 1942, the Secretary of the Interior, from the first that in this program, as in any mining enterprise, exploration activities were essential if production were to be maintained over an extended period of time. In order to satisfy obvious security requirements during the war, it was necessary to proceed with this exploration program. The Secretary of War, as to the possible end of the war, that the only requirement had been to develop uranium reserves from the Colorado Plateau, had no further requirement. The exploration program would be continued.

EXPLORATION PROGRAM IN THE UNITED STATES

1. The search for radioactive ores by prospectors and the mining development of uranium ore by the Commission through the establishment of:
 a. A guaranteed price schedule for uranium, which will be applied to the production of uranium on a royalty basis.
 b. A guaranteed price schedule for uranium, as in any mining enterprise, exploration activities are essential if production were to be maintained over an extended period of time. In order to satisfy obvious security requirements during the war, it was necessary to proceed with this exploration program. The Secretary of War, as to the possible end of the war, that the only requirement had been to develop uranium reserves from the Colorado Plateau, had no further requirement. The exploration program would be continued.

EXPLORATION PROGRAM IN THE UNITED STATES

1. The search for radioactive ores by prospectors and the mining development of uranium ore by the Commission through the establishment of:
 a. A guaranteed price schedule for uranium, which will be applied to the production of uranium on a royalty basis.
 b. A guaranteed price schedule for uranium, as in any mining enterprise, exploration activities are essential if production were to be maintained over an extended period of time. In order to satisfy obvious security requirements during the war, it was necessary to proceed with this exploration program. The Secretary of War, as to the possible end of the war, that the only requirement had been to develop uranium reserves from the Colorado Plateau, had no further requirement. The exploration program would be continued.

2. The development of geological knowledge of the United States, particularly with respect to uranium deposits, has led to the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

3. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

4. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

5. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

6. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

7. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

8. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

9. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

10. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

11. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

12. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

13. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

14. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

15. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

16. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

17. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

18. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

19. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

20. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

21. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

22. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

23. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

24. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

25. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

26. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

27. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

28. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

29. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

30. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

31. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

32. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

33. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

34. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

35. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

36. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.

37. The exploration of uranium deposits has been conducted by the Commission, which has contracted for the exploration of uranium deposits in the United States through the establishment of the United States Geological Survey, which is engaged in the exploration for uranium deposits.
The instrument is designed to meet ex-
acting requirements as to accuracy, weight,
size, simplicity of operation, and range of
full scale capacities. Through the use of a single dial switch, a selection of any one of six size measurement ranges is
available to provide readings from 1 to 300
bameters full scale deflection.

New Building Construction (725)

The revolutionary new CONAIR proces-
ses of construction for everything from smal-
line homes to large super-engineering
buildings, has been approved by the Los
Angeles Building Commission, which
paves the way for CONAIR SALES, Inc., to
release their national program for
licensing contractors to use their
process for building all steel-reinforced concrete units.

The new CONAIR plan paves the way for CONAIR SALES, Inc., to
offer the public a lifetime home, school,
and roller, is as simple as driving your
truck, and allows easy maneuvering in
steeped slopes and on bad roads. Two
New Bucket Loader (726)

Newest addition to the Barber-Greene
line of portable "Constant Flow" material
handling and power requirements. High
powered hydraulic controlled swivel
loaders, the 543 handles all bulk materials,
diesel can easily be made portable, but is
not as powerful as the TS diesel, and
diesel is designed for mounting either on
a simple concrete base, or on welded-steel
frames, for stationary or near-stationary use.

The sighting device is novel to the sur-
veyor, and is especially designed for
permitting small and campkin bearings are
provided with aluminum alloy, full-
standing, interchangeable shells. The cos-

daughter, which includes the level of the
feet that is uncovered by the structure, and
the frog "foot" projectors serve as
2% scale projectors. The map is

deps. The new 543 is designed for mounting
on a simple concrete base, or on welded-
steel frames, for stationary or near-stationary use.

The sighting device is novel to the sur-
veyor, and is especially designed for
permitting small and campkin bearings are
provided with aluminum alloy, full-
standing, interchangeable shells. The cos-

daughter, which includes the level of the
feet that is uncovered by the structure, and
the frog "foot" projectors serve as
ALUMNI BUSINESS

OFFICERS OF ALUMNI ASSOCIATION

JAMES COLASANTI, '35
President

A. GEORGE SETTER, '36
Vice-President

ROBERT W. EVANS, '36
Secretary

DONALD R. SCHADE, '36
Asst. Secretary

EXECUTIVE COMMITTEE MEETING

The regular meeting of the Colorado School of Mines Alumni Association was held in the Alumni office on Friday, May 19, 1950.

The meeting was called to order by President Colasanti at 7:35 P.M. Roll Call

Members present: James Colasanti, President; A. George Setter, Vice-President; Robert W. Evans, Secretary; Malcom E. Collier, Treasurer; Robert J. McGlone, Committee chairman; Addison B. Manning; Roger M. Schade; Bruce B. LaFelette for H. J. McMichael; Executive Manager, Frank C. Bowman.

Members absent: Harvey Mathews, Carl L. Diamant, Committee chairman; Charles; O. Parker; Edward F. White, Lynn W. Storm, Harry McNeil, Herbert Kech, John H. Winchell.

The minutes of April 17, 1950, were read and approved.

President Colasanti called for the Treasurer's report and reports of standing committee, as follows:

Treasurer's Report

Mr. Collier reported that the Association is in good health financially, showing a net profit of $642.62 for the first four months of 1950.

Mr. Collier reported that the report be accepted; seconded by Mr. Colasanti.

Committee Chairman

ADDITION B. MANNING, Jr., ’40
Athletic

ROGER M. SCHADE, ’36
Alumni Endowment

MALCOLM E. COLLIER, ’36
Treasurer

WILLIAM D. TRAYER, ’46
Capabilities

CHARLES O. PARKER, ’33
Nominations

HARRY L. SCOTT, ’33
Committee 11

COMMITTEE CHAIRMEN

HAROLD E. BARTHE, No. 23
Research and Investigation

A. GEORGE SETTER, ’36
Membership

JOHN H. WINECHELL, ’17
General

ED. F. WHITE, ’36
Public Relations

PUBLICATION COMMITTEE

HERBERT W. HECHT, ’36
Editor

WILLIAM M. TRAYER, ’46
Manager

BERNARD M. BENCH, ’30
Secretary

HOWARD A. STOHN, ’36
Assistant

MARVIN ESTES, ’49

MEETINGS

Bismarck Alumni Meetings

1st Monday of each month, Alumni Office, 7:30 P.M.

Argosy Alumni Meetings

1st Monday of each month, Argus Hotel, 7:30 P.M.

Publication Committee Meetings

2nd Thursday of each month, Argus Hotel, 7:30 P.M.

Crestwood Alumni Office Meetings

Wednesday 7:30 P.M. preceding Regular Alumni Meetings.

(Continued on page 60)

ALUMNI BUSINESS

FOR YOUR CONVENIENCE

IX. OUTFITTERS, Dealers in Outfitting for Mining

The Great Lakes Section, Mines Alumni Association, held their regular meeting the evening of April 28, 1950.

The officers present were:

J. A. American, '77; Richard Downey, '44; Robert Edmund, '50; Martin Fomin, '57; Harry Lawrence, '47; Earl Martin, '39; Norman D. Croswell, '48; H. A. Rehman, '27; Ray C. Firth, '31; Fred Worthen, '41; William Heineman, '52; Mrs. Robert, 'Rehman, and Ted Bergstrom.

A movie of the 1949 Mines-Western State football game was shown. The fighting spirit of a good football squad and occasional glimpses of Mines’s intricate torch line-up in stands brought back fond memories of days gone by. This present enjoyed having as guests the wives of three of the alumni. Also present as a guest was Ted Bergstrom, selected by the alumni. Ted is currently attending Colorado University in Iowa.

J. Old Business.

Mr. Watterson reported on the progress of the Scholarship Awards Committee. Through extensive correspondence and with the aid of the Chicago Tribune, the committee has been able to obtain very encouraging results in contacting scholarship candidates.

Mr. Oshlawson reported a balance of $31.00 in the Petty Cash Fund. Contributions were made to supplement the Fund.

II. New Business.

It was suggested that, at some date in the latter part of September, the mining family hold a picnic at the Chicago Tribune, the committee has been able to obtain very encouraging results in contacting scholarship candidates.

After having an hour or so to again review the problems and, as at all meetings, where somebody meets somebody else who has not yet seen them for a number of years, the same happened with two of the younger group who greeted them as they entered the meeting.

After a very enjoyable meal, a short business meeting was held, at which it was decided that the future Governing Body of the New York Section shall be a Board of Governors, composed of a President, who will be Board of Governors, consisting of members from the various age groups. This Board of Directors will elect their own leaders. In order that they may be held over from year to year, in terms of office of this type, the following was proposed. Dan DeFerrod was appointed Chairman of a nominating committee of three to select a slate along these lines at our meeting probably to be held the early part of the year.

The preliminary address list was given to each man present. With the foregoing announcement a membership card will be sent out to each member to give detailed information as to his location, position, etc., in order that a printed list can be sent out in the late summer.

After the business was dispensed with, films of two 1949 football games were shown, both of which were quite enjoyable.

NORTH CENTRAL TEXAS

E. B. Bank, '73, President; J. W. Parker, '76, Vice President; H. O. Stover, '40, Secretary-Treasurer, 2411 First Natl. Bank Bidg., Fort Worth, Texas, Telephone: 3-4958.

PACIFIC NORTHWEST

L. S. Montgomery, '31, President; J. M. Fogg, '03, Secretary-Treasurer, First National Bank, Oklahoma City, Oklahoma, 1st and Third Thursday of each month at the Oklahoma Club, Luncheon May and December minus dues are cordially invited to drop in.

PACIFIC NORTHWEST

A. E. Kline, '40, President, 2913 Halliday, Seattle, 6-94, (Savings Available), Meetings open to all.

SOUTHERN CALIFORNIA

A. R. Kline, '40, President, 2630 Arkansas, Phoenix, Arizona, 6-94, (Savings Available), Meetings open to all.

McCallum-Harris

McCallum was the widow of A. J. McCallum, who was killed in an automobile accident in 1950 in Australia where he was doing consulting work.

The couple were known in the world of mining as McCallum-Harris.
The Rocky Mountain Section of the American Society for Engineering Education held its annual conference which prominent leaders of engineering education in the Rocky Mountain region presented papers in a program which lasted the day.

Among the principal speakers were: C. M. Knudson, dean of the school of engineering, University of Denver; A. R. Dechere, associate professor of mechanical engineering, University of Colorado; E. J. Lindahl, professor of mechanical engineering, University of Wyoming; P. J. Wahr, professor of mechanical engineering, University of Utah; A. M. Kilr, coordinator of the cooperative engineering placing at the University of Denver; T. H. Evans, dean of the division of engineering, Colorado A. & M. college, Fort Collins; and T. A. Kelly, professor and head of civil engineering at Mines.

At the luncheon meeting, three foreign students at the school spoke, Hauan M. Eckholt of Cairo, Egypt, Amreekzamari of Calcutta, India, and Hendrik V. Van Poullen of The Hague, Holland. They told briefly of engineering education in their respective countries as compared to what they are experiencing here.

Mines Also Played Host

The Rocky Mountain Section of the Geology Society of America this spring when they met for a two-day conference.

Among the papers presented were: "Contributions to the Geomorphology of the Raton Mesa Area" by Willian S. Leving, 20, Mines geology professor; "High-Level Growths, West of Golden, Colorado, and Their Physiographic Significance" by C. F. Esquite, G. B. Morgan, and L. B. Roberson, Mines graduate students; "Techniques of Alkaline Rocks, Mountzou District, Sakhalin," by Kenji Yago, graduate student; "Additional Comments on the Stratigraphic Distribution of Orelline University of Orthgy" by Prof. L. W. Le-Roy; "Sunt Pockets and Breccia in the Leadville Limestone, Star Basin Area, Colorado," by H. L. Garrett, graduate student; and "Hydrothermal Alteration Effects in the Leadville Limestone and their Relation to Mineralization" by R. N. Davenport, also a graduate student.

At a special session on Engineering Geology eight papers, each pertaining to some phase of engineering geology, were read.

Dr. Ben H. Parker, ex-president of Mines, acted as co-chairman of the meeting with Mr. C. J. Hare, Denver geologist. An Ohio Oil company geologist for many years, Hare is the president of the Rocky Mountain section of the society. Dr. F. M. Van Tuyl, head of the Mines geology department, is vice chairman, and Dr. Warren O. Thompson, head of the Colorado university department of geology, is the secretary.

Dr. Thomas C. Pouller

A distinguished explorer and geophysicist, was a visitor at the school the early part of May when he presented the library with two of his books:

Geophysical Studies in the Antarctic. This report deals primarily with those phases of the scientific program which in one way or another relate to geophysics and more particularly to those aspects of the geophysics program which would be of particular interest to any one contemplating scientific studies of ice fields whether on shelf ice, ice caps, glaciers, permanent sea ice and snow covered areas.

The Pouler Method of Geophysical Exploration. The material presented in this paper is the result of an extensive research program sponsored by the Institute of Investigative Research in San Antonio, Texas, for the purpose of developing and making available to the petroleum and geophysical industries the new seismic method of geological exploration which they have chosen to call the Pouler Seismic method.

The Oredigger

The Oredigger has been awarded a First Class honor rating for the first semester, 1949-1950, by the All-American Critical Service of the Associated Colleges.

Judged in comparison with 383 other college newspapers, The Oredigger earned 940 out of a possible 1000 points. Of a possible score of 10, The Oredigger earned 9 points in manuscript, 8 points in mechanics, 9 points in content, and 1 point in management. The Oredigger also a graduate student.

Among the papers presented were: "Additional Comments of the Stratigraphic Distribution of Orelline University of Orthgy" by Prof. L. W. Le-

Mines also played host to the Rocky Mountain Section of the American Society for Engineering Education. The Oredigger Magazine is sponsored by the students of the school.

Sports March

By BILL ANDERSON

The Mines Track Team won firsts in 11 events to take a dual Rocky Mountain Conference Track Meet from Colorado State by a score of 72 2/5-53 1/2 on May 2. Hank Beardsley was high point man for the Orediggers winning the broad jump and the broad jump and placing third in the high jumps. Paul Vaughn won the mile and two-mile runs for Mines.

The results:

MILE RUN—Varigian, Mines; Johnston, CO; Bymaster, M; Fienkirk, D; Tombstone, M; White, CO; Sturner, M; York, M; Messner, D; Fienkirk, D; Posch, M; Joy, M; Post, M; Fienkirk, D; Borth, D; Posch, M; Joy, M; Post, M; Fienkirk, D;
These books may be obtained through the Book Department of The Mines Magazine

Principles of Petroleum Geology
By Cecil G. Likens, Professor of Geol­
ogy, Texas Christian University, Fort Worth,
Texas.

This book comprises a thorough study of one of the younger and perhaps the most important of the geologic disciplines — petroleum geology. It is designed to inform the student of the techniques involved; to acquaint him with the author's conclusions; to encourage inquisitiveness and further study.

The introduction to the text sketches briefly the development of the science of petroleum geology and describes the work of the petroleum geologists. In the first chapter, the author gives an idea, for the first time, of the geographic and strati­graphic distribution of petroleum. He then describes in detail the processes of sedimentation, (1) Basic principles of sedimentation; (2) Geology of the National Research, (3) Description of areas showing higher than average concentration of uranium. The discovery, in a gorge in the Huron Range, of a uranium-bearing vein in Baraga County, Michigan, near the junction of the Baraga and Fitchville ranges, is described. The uranium content of the vein is estimated to be about 0.01 per cent. The ore is composed of pitchblende, which gives the vein a red color, and of a variety of other minerals, including quartz, feldspar, and pyrite. The vein is about 10 feet wide and is exposed over a length of 100 feet. It is estimated that the vein contains about 100,000 tons of ore.

The book also describes the methods used in the exploration for uranium, including the use of geiger-counter tubes and other devices. The results of these investigations are described, and the conclusions of the author are presented. The book is illustrated with maps and diagrams, and it is well written and well printed.

Kens Machtnical Engineers' Handbook

A new edition of this well-known and widely used reference book has been published. The new edition includes many new sections on the latest developments in mechanics and engineering. It is divided into two volumes, the first covering mechanics of solids and the second covering mechanics of fluids.

This book is a valuable reference for engineers and students of engineering. It contains a wealth of practical information and is well organized and easy to read. It is a must for any library in the field of engineering.
tions of uranium in phosphates occur in the deposits of the Pliocene Bone Valley formations in Florida and the Permian Phosphorite formations of Wyoming, Minneso ta, and Idaho.

These phosphate formations also contribute the principal source of raw materials for the phosphate fertilizer industry, and in studying the occurrence of uranium in phosphates we have studied a vast amount of exploration data furnished by mining companies and supplemented by pit and mill sampling. We have now almost completed our program of exploration on these very low-grade deposits. The principal objective of the program has been to determine what reserves of uranium are available in such deposits, what specific areas show the highest grade of ore and appear to be most susceptible to mining, and in physical and chemical factors has been most important in controlling whether or not deposits are recoverable.

CONCLUSION

To sum up briefly, our program has accomplished the following results:

1. It has located many additional deposits of uranium ore bodies on the Colorado Plateau as a result of intensive exploration and mining activity.
2. It has established the fact that primary uranium with deposits do exist in the Grand Canyon area of Utah, and in the Colorado Plateau, as in the El Paso Mining District in Idaho, and in the Upper Peninsula of Michigan.

3. It has led to the discovery of numerous occurrences of both primary and secondary uranium minerals in western United States, including the Colorado Plateau, such as those at Marysvale, Utah.
4. It has developed extensive information concerning low-grade uranium deposits in shales and phosphates, and this information indicates that under certain conditions mining may be feasible in mine and recover uranium from these very low-grade ores.

THE MINES MAGAZINE

JUNE, 1950
GOLDEN MERCHANTS
Always Ready to Serve “Mines” Men and Women

“Colorado’s Oldest Weekly Newspaper”
H. F. Parsons, ’03
Phone: Golden 78
Golden, Colorado

THE FOSS DRUG CO.
“The Miners’ Hangout”
For 39 Years
Phone: Golden 240
GOLDEN, COLORADO

THE HOLLAND HOUSE
Congratulations to the greatest
school of its kind in the world—
THE COLORADO
SCHOOL OF MINES

McKEEHEN’S
Home of
HART SCHAEFFNER & MARX
Clothes
Phone: Golden 30
Golden - - Colorado

KELLOGG’S
HARDWARE, INC.
Golden VARIETY Phone 11
Miners Needs Are Our
Specialty
The Store That Serves to Satisfy
Miko - Bob - Joe - Bob

Compliments of
THE FIRST NATIONAL BANK
IN GOLDEN
Your Friendly Miners
Bank at the Foot of
the Rockies
Assets in excess of $4,000,000
Member Federal Deposit Corp.

The Largest Stock of Technical
Books in the West
Write to us for any book
in print.
STRAWN’S
F. W. Strawn - B. M. Strawn
1205 Washington Ave.
Golden - Colorado

Compliments of
THE Duvall-Davison
Lumber Company
1313 Ford Street
Golden, Colorado

Compliments of
The Metropolitan
Barber Shop
1219 Washington Ave.
Golden, Colorado

Paramount
Cleaners-Dyers
Phone Golden 119
809 12th Street
Golden, Colorado
“We own and operate
our own plant”

MOVIES
ARE YOUR
BEST
ENTERTAINMENT
CONGRATULATIONS
TO “MINES”
COMPLIMENTS OF

Coors is best
by every test
Coors Porcelain Company
GOLDEN, COLORADO

THE THEATRE BEAUTIFUL
Phone 444

COORS U.S.A.

THE MINES MAGAZINE® JUNE, 1950
THE MINES MAGAZINE® JUNE, 1950
FOR BETTER LIVING
- Live Electrically
- Colorado Central Power Company
- The Friendly People
- We Serve Colorado School of Mines

COHTRIBUTORS TO PLACEmEiiT Funo
Golden Colorado
FOR BETTER LIVING
Colorado School of Mines
Colorado Central
Craig-Frederick Power Company
CARS AND TRUCKS
COMPLIMENTS OF
13th and Ford Sts.
CHEVROLET
We Serve

BUFFALO MOTORS
Gas — Oil — Fuel Oil

Congratulations Miners!
GOLDEN MOTORS, INC.
1018 Washington Ave.
Golden, Colorado

Campus Service Station
Frontier Products
Dodge-Plymouth
Gas — Oil — Fuel Oil
1102 19 Street
Golden, Colorado

SEISMIC
. SURVEYS

Apache Exploration Co.
Mellie Esperson Bldg.
Houston, Texas
Albert L. Ladner '27, Pres.

THE LufiN Rule Co.
SAGINAW, MICHIGAN

Now! a CONCENTRATOR for minus ½" ores
In laboratory and pilot tests the Weinig Concentrator has proved its ability to handle sizes of iron ores and other materials bordering where heavy density processes begin to fail. The laboratory model illustrated is now available—4½" tank.

The Concentrator for laboratory testing can be put into operation in a few minutes and requires no unusual treatment or accessories. Ask for test results on iron ore and other materials. Write for details on the commercial size Weinig Concentrator for plant installation.

COldARo IRON WORKS Co.
1620 17th Street
Decker 2, Colorado

(Continued from page 58)
C. B. Larson, '23
A. E. Calabra, '48
C. M. Hales, '48
Vincent L. Barth, Ex-'41
Mario Fernandez, '39
J. C. Carlile
R. W. Moyar, '41
W. F. Edwards, '48
Robert D. Bowser, '49
R. K. V. Pope
C. L. Fleischman, '30
V. L. Lebar, '36
Frank DeGiacomo, '32
Edw. C. Bryan, '42
A. E. Falvey, '34
E. C. Robacker, '42
Russell Badgett, Jr., '40
Marvin H. Estes, '49
T. E. Phipps, '49
A. G. Hampson, Ex-'31
R. W. Parker, '49
Robert J. Black, '49
S. H. Stocker, '42
C. W. Gustafson, Ex-'34
P. C. Cresto, Ex-'50
J. J. Sanna, '41
Edw. W. Anderson, '43
Edw. S. Larson, '23
John Labriola, '49
Charles B. Foster, '27
Edwin J. Ziomek, '43
David P. Weare, '49
A. B. Garey, '25
D. W. Goeller, '78
Elmer F. French, '43
Silas Dofoo, '41
Dick C. Moody, Jr., '33
Edw. A. Lavert, '31
Alex E. Hall, '39
Edw. W. Anderson, '43
L. S. Wieder, '47

PERSONAL NOTES
(Continued from page 53)

CAPT. HAROLD M. McCallister, '27, is
now being addressed 600k Grill, Dept. A.P.C., 2465 Louisiana Ave., San Fran-
sicq, Calif.

J. R. Metcalf, '48, junior engineer, Phillip Petroleum Company, receives
mail at his home, 102 No. 21st Street, Apt. A, 2 Peak, Valley, Oklahoma.

Robert E. Michaelis, Jr., '49, has moved
his residence to 355 So. Neber Avenue, Pittsburgh 4, Pa. He is Research
bacteriologist for Carnegie-Illinois Steel Research Laboratory.

Dominio Mines, '40, Chief Engineer, American Smelting & Refining Co., has
a new home address, 2615 Old Hills Road, Short Hills, N. J.

(Continued on page 60)

LETTERS

(Continued from page 18)

25th Anniversary celebration of our class. It seems that I have missed one letter but
it doesn’t make much difference.

Fortunately, or unfortunately, I have just recently been transferred to some new
duties out here in Regina and will find it impossible to leave to be present at the reunion,
or a fact which I regret very deeply since I am sure that a meeting with a lot of you
would be very pleasant and interesting.

It has always been a source of amusement and ridiculous pride to find how well
known the school is, no matter where one travels, and how ubiquitous its graduates are.

On top of that they seem to have left a good taste as well as a good reputation
around. On top of that they seem to have left a good taste as well as a good reputation

I have been down in South America, up in Canada, and it seems that the boys get
physical work, to go to "Mines" as it is for a bride to wear white at her wedding.

According to Table 1, the mortality rate of those who were exposed to the virus was

FACTOR (Continued from page 41)

THE MINES MAGAZINE # JUNE, 1950

DOODGE
PLYMOUTH
DOODGE JOBSITE TRUCKS

THE THOMAS-HICKERNICK MOTOR CO.

18th Ave. and Downing
Denver, Colo.

TA 6211

L. C. THOMAS, '12

LETTERS

(Continued from page 50)

nothing of it. In addition they seem to have a far better than average ability and desire
to understand the people with whom they are living, especially in foreign lands. That
may explain why so many of them stay in foreign work and make a success of it. With-
out meaning to oversentimentalize the situation at all, it is gratifying and pleasant, to
see a mild word, to see the extraordinary spirit of friendliness and "camaraderie" which
exists whenever "Mines" graduates meet, and over all, the normal amount usually
associated with the graduates from the same school.

Anyway let me express my regrets at not being able to attend the reunion, but I do
hope to be able to visit you and the others some time this year.

P. E. Just a small contribution enclosed towards the "Mines" Foundation.

REGRETS CANNOT ATTEND REUNION

From Colorado R. Henderson, 230 R. Union Street, Philadelphia 10, Pa.

I have received your letter in reference to the 25th Anniversary of our class of
1925 at the Colorado School of Mines.

I regret that I will be unable to attend the class reunion on May 25 at commencement
time. In view of the long-standing custom of presenting the "Mines" Foundation with one
silver dollar for each original member of the class, enclosed please my check for
$1.00 to help make up for some of the missing ones.

Best wishes.

P. E.

An Unbeatable Pair!
THE WEIGHTOMETER*

"Continuously and automatically weighs and total-
dizes daily mine output — Easily installed on existing
conveyor — Weighs without interrupting flow of
materials — Proven performance."

Send Bulletin: Weightometer No. 275 Feedweight No. 551

THE FEEDWEIGHT*

"Automatically controls the feed of ore to the Ball Mill by weight — Self
contains Operates over a wide range — Capacities to suit — Total
weight recorded.”

MERRICK SCALE MFG. CO.

THE MINES MAGAZINE # JUNE, 1950
ALUMNI BUSINESS

(Continued from page 43)

The May magazine has been mailed; the 1949 Elecctrolyte and Year Book has been mailed; the 1949 Index will be mailed within a few days.

Plenty of material for the June issue is assured and the advertising is coming in very well.

Letters are being sent out requesting articles for the Annual Petroleum number but no material has as yet been received.

Moved by Mr. Evans, the report be accepted; seconded by Mr. Setzer; passed.

Research and Investigation Committee

No report.

General Report

Mr. Bowman reported that receipts for the first four months of this year are slightly less than for the same period in 1949. Contributions for the Placement Service are ahead of previous years.

Special Business

An application for associate membership, submitted by Howard Wensley Green, Los Angeles, Texas, was read by Mr. Setzer, Mr. Green met all requirements and had remained the proper fees.

Moved by Mr. Setzer, the application be accepted, seconded by Mr. Manning; passed.

Adjournment

The meeting adjourned at 9:15 P.M.

CATALOG REVIEWS

(Continued from page 42)

THE MINES MAGAZINE JUNE, 1950

<table>
<thead>
<tr>
<th>Class 1927</th>
<th>Class 1931</th>
<th>Class 1940</th>
<th>Class 1943</th>
</tr>
</thead>
<tbody>
<tr>
<td>John S. Phillips</td>
<td>V. G. Gabriel, M.S.</td>
<td>W. J. Sanna, Ph.D.</td>
<td>A. R. Davis, M.S.</td>
</tr>
<tr>
<td>1250 Nevada Ave., Denver, Colorado</td>
<td>2206 North Reese Place, Burbank, California</td>
<td>2219 Market Street, Denver, Colorado</td>
<td>2206 North Reese Place, Burbank, California</td>
</tr>
<tr>
<td>3405 Grant Street, Denver, Colorado</td>
<td>2152 W. S. Smith, Arlington, Texas</td>
<td>1250 W. 23rd Ave., Denver, Colorado</td>
<td>2152 W. S. Smith, Arlington, Texas</td>
</tr>
</tbody>
</table>

PERSONAL NOTES

(Continued from page 56)

- George R. Rogers, '30, has been transferred from Douglas, Arizona, to his present home, 4417 Lucera Circle, Pasadena, California, and received mail at this last address.
- C. E. Davis, '34, is employed in the iron and steel industry.
- T. R. S. Waring, '36, is employed in the iron and steel industry.
- J. H. Bridgman, '38, is employed in the iron and steel industry.
- W. W. Johnson, '41, is employed in the iron and steel industry.
- J. E. Olson, '41, is employed in the iron and steel industry.
- H. M. Peterson, '42, is employed in the iron and steel industry.
- J. E. Olson, '43, is employed in the iron and steel industry.

MINES TODAY

(Continued from page 46)

- The May magazine has been mailed; the 1949 Elecctrolyte and Year Book has been mailed; the 1949 Index will be mailed within a few days.
- Plenty of material for the June issue is assured and the advertising is coming in very well.
- Letters are being sent out requesting articles for the Annual Petroleum number but no material has as yet been received.
- Moved by Mr. Evans, the report be accepted; seconded by Mr. Setzer; passed.
- Research and Investigation Committee: No report.
- General Report: Mr. Bowman reported that receipts for the first four months of this year are slightly less than for the same period in 1949. Contributions for the Placement Service are ahead of previous years.
- Special Business: An application for associate membership, submitted by Howard Wensley Green, Los Angeles, Texas, was read by Mr. Setzer, Mr. Green met all requirements and had remained the proper fees.
- Moved by Mr. Setzer, the application be accepted, seconded by Mr. Manning; passed.
- Adjournment: The meeting adjourned at 9:15 P.M.

NATIONAL FUSE & POWDER CO.

Manufacturers of

"National" Brands

SAFETY FUSE

For Use in All Blasting Operations

<table>
<thead>
<tr>
<th>Schweitzer</th>
<th>Black Monarch</th>
<th>Black Averon</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTORS FOR PRIMACORD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USE "JEATJR" FLOATATION FOR

HIGH METALLURGICAL EFFICIENCY

in least flotation time

IMPROVED RECOVERY of mineral

HIGHER GRADE concentrate

REDUCED REAGENT requirements

GREATER AIR COVERAGE and more effective diffusion of air into continuous masses of minute bubbles, without surges

POSITIVE AIR CONTROL

Supplied with or without individual cell pulp level control

MORSE BROS., MACHINERY COMPANY

ESTABLISHED 1898 DENVER, COLORADO, U. S. A. (CABLE: MORSE)

MORSE PRODUCTS COMPANY

Manufacturers of

IMPELLER AND FEDU DISC ASSEMBLY

WRITE FOR LITERATURE

THE MINES MAGAZINE JUNE, 1950
Barber-Greene Permanent Conveyors are complete, self-contained, standardized units that can be bolted together quickly . . . easily altered and moved. Field assembly of miscellaneous pulleys, bearings, and dozens of other parts is completely eliminated. The pre-engineered, factory-assembled terminals operate at top efficiency . . . reduce maintenance expense.

Prefabrication reduces manufacturing delays . . . permits our sales engineers to give you prompt quotations. Standardized construction and stock of all parts mean quicker delivery.

Chances are, a B-G system offers possibilities you've never before realized. Let us show you how B-G Standardized Conveyors suit your specific needs.
Dependability, efficiency and cost-saving economy are built-in features of every WILFLEY Sand and Acid Pump. Individual engineering on every application. Write or wire for complete details.

Buy WILFLEY for Cost-Saving Performance

A. R. Wilfley & Sons, Denham Building, Denver, Colorado.

Gentlemen:

I understand that your Mr. Elmer Wilfley is out of the City and upon his return I wish you would show him this letter and express to him our appreciation of the fact that this pump was lent to the Leyden Lignite Company over twenty years ago and it has been in continuous service ever since with no repairs - a remarkable achievement.

Yours very truly,

THE LEYDEN LIGNITE COMPANY,
By President and General Manager.

A. R. Wilfley & Sons, Inc.
Denver, Colorado, U.S.A.

New York Office:
1775 Broadway
New York City, N.Y.